问题描述
上帝永远将一切几何化。——柏拉图
功成名就的金先生开始研究起哲学来了。他做了一个梦,梦见他拥有了一个理想国!
他的理想国山明水秀,风光旖旎。城市繁荣,交通发达。土地平旷,屋舍俨然,有桑竹美池良田之属,阡陌交通,鸡犬相闻。
把理想国的城市标号为1至n,每个城市有一个独立的编号。在地图上,可以建立一个平面直角坐标系,用一个坐标表示一座城市的位置。一些城市间修建了笔直的高速公路。公路一共有m条。为了避免相撞事故,除端点外,任两条公路没有公共点。理想国的城市是双连通的,亦即任何两个城市间可以找到两条不相交的简单路径。
金先生的理想国的每个城市的繁荣程度不同,最繁荣的繁荣度为1,最破败的繁荣度为n。一条公路两端的城市的繁荣度如果分别为a和b(a < b),那么称开区间(a, b)为这条公路的特征区间。观察两条公路,它们的路况相似,当且仅当它们的特征区间的交非空。
金先生一觉醒来,只记得理想国城市布局,而忘了城市的繁荣情况了。于是,他想解决下面两个问题。
(1) 平均情况下,相似的路有几对?
(2) 最好情况下,最多能有几条路,它们两两相似?